Verify the Factorization: x² + 3x - 18 = (x+6)(x-3)

Question

The decomposition of the previous trinomial:

x2+3x18=0 x^2+3x-18=0

is (x+6)(x3)=0 (x+6)(x-3)=0

Video Solution

Solution Steps

00:00 Is the factorization correct?
00:08 Let's pay attention to the trinomial coefficients
00:14 We want to find 2 numbers
00:27 whose sum equals B and their product equals C
00:31 These are the appropriate numbers
00:35 Therefore these are the numbers we'll put in parentheses
00:44 The trinomial factorization equals the given
00:47 And this is the solution to the question

Step-by-Step Solution

Let's try to factorize the given expression using quick trinomial factoring:

x2+3x18 x^2+3x-18

We'll look for a pair of numbers whose product is the free term in the expression, and whose sum is the coefficient of the first-degree term, meaning two numbers m,n m,\hspace{2pt}n that satisfy:

mn=18m+n=3 m\cdot n=-18\\ m+n=3\\ From the first requirement mentioned, that is - from the multiplication, we should note that the product of the numbers we're looking for needs to yield a negative result, therefore we can conclude that the two numbers have different signs, according to multiplication rules, and now we'll remember that the possible factors of 18 are 2 and 9, 6 and 3, or 18 and 1. Meeting the second requirement mentioned, along with the fact that the numbers we're looking for have different signs leads to the conclusion that the only possibility for the two numbers we're looking for is:

{m=6n=3 \begin{cases} m=6\\ n=-3 \end{cases}

Therefore we'll factorize the given expression to:

x2+3x18(x+6)(x3) x^2+3x-18 \\ \downarrow\\ (x+6)(x-3)

Thus clearly the suggested factorization in the problem is correct.

Therefore - the correct answer is answer A.

Note:

The given question could also be solved by expanding the parentheses in the suggested expression:

(x+6)(x3) (x+6)(x-3) (using the expanded distributive law), and checking if indeed we get the given expression:

x2+3x18 x^2+3x-18 , however it is of course preferable to try to factorize the given expression - for practice purposes.

Answer

True