Solve (x+3)² = x² + 9: Perfect Square Equation Challenge

Question

Solve for x:

(x+3)2=x2+9 (x+3)^2=x^2+9

Video Solution

Solution Steps

00:00 Find X
00:03 Use shortened multiplication formulas to open the parentheses
00:12 Solve the multiplications and squares
00:19 Simplify what we can
00:25 Isolate X
00:30 And this is the solution to the question

Step-by-Step Solution

Let's solve the equation. First, we'll simplify the algebraic expressions using the perfect square binomial formula:

(a±b)2=a2±2ab+b2 (a\pm b)^2=a^2\pm2ab+b^2 We'll then apply the formula we mentioned and expand the parentheses in the expression in the equation:

(x+3)2=x2+9x2+2x3+32=x2+9x2+6x+9=x2+9 (x+3)^2=x^2+9 \\ x^2+2\cdot x\cdot3+3^2=x^2+9\\ x^2+6x+9=x^2+9 We'll continue and combine like terms, by moving terms around. Later - we can notice that the squared term cancels out, therefore it's a first-degree equation, which we'll solve by isolating the variable term on one side and dividing both sides of the equation by its coefficient:

x2+6x+9=x2+96x=0/:6x=0 x^2+6x+9=x^2+9 \\ 6x=0\hspace{8pt}\text{/}:6\\ \boxed{x=0} Therefore, the correct answer is answer A.

Answer

x=0 x=0