Solve Mixed Number Division: 10⅓ ÷ 4 1/14 Step-by-Step

Question

1037:4114= 10\frac{3}{7}:4\frac{1}{14}=

Video Solution

Step-by-Step Solution

To solve the problem, follow these steps:

  • Step 1: Convert each mixed number to an improper fraction.
  • Step 2: Divide by multiplying by the reciprocal of the second fraction.
  • Step 3: Simplify the result, and if required, convert back to a mixed number.

Let's proceed with each step:
Step 1: Convert 1037 10\frac{3}{7} and 4114 4\frac{1}{14} to improper fractions.
The first mixed number 1037 10\frac{3}{7} becomes: 10×7+37=737 \frac{10 \times 7 + 3}{7} = \frac{73}{7} .
The second mixed number 4114 4\frac{1}{14} becomes: 4×14+114=5714 \frac{4 \times 14 + 1}{14} = \frac{57}{14} .

Step 2: Divide by multiplying by the reciprocal.
737÷5714=737×1457 \frac{73}{7} \div \frac{57}{14} = \frac{73}{7} \times \frac{14}{57} .

Step 3: Perform the multiplication and simplify.
The multiplication of fractions gives: 73×147×57=1022399 \frac{73 \times 14}{7 \times 57} = \frac{1022}{399} .

Step 4: Convert to a mixed number, if necessary.
1022÷399 1022 \div 399 gives a quotient of 2 and a remainder of 224: 1022=2×399+224 1022 = 2 \times 399 + 224 .
Thus, the mixed number is 2224399 2\frac{224}{399} .

The solution to the problem is 2224399 2\frac{224}{399} , which corresponds to choice 4.

Answer

2224399 2\frac{224}{399}