Solve: 11.2 × 101 - Decimal Multiplication Challenge

Question

11.2×101= 11.2\times101=

Video Solution

Step-by-Step Solution

To solve this problem, we'll use the distributive property of multiplication:

  • Step 1: Decompose 101 101 into 100+1 100 + 1 .
  • Step 2: Apply the distributive property: 11.2×(100+1)=(11.2×100)+(11.2×1) 11.2 \times (100 + 1) = (11.2 \times 100) + (11.2 \times 1) .
  • Step 3: Calculate 11.2×100 11.2 \times 100 and 11.2×1 11.2 \times 1 , then add the results.

Now, let's execute each step:
Step 1: Write 101 101 as 100+1 100 + 1 .
Step 2: Use the distributive property:
11.2×101=11.2×(100+1)=(11.2×100)+(11.2×1) 11.2 \times 101 = 11.2 \times (100 + 1) = (11.2 \times 100) + (11.2 \times 1) .

Step 3: Perform each multiplication:
11.2×100=1120 11.2 \times 100 = 1120 .
11.2×1=11.2 11.2 \times 1 = 11.2 .

Adding the results: 1120+11.2=1131.2 1120 + 11.2 = 1131.2 .

Thus, the product of 11.2×101 11.2 \times 101 is 1131.2 1131.2 , which matches the correct choice from the provided list.

Answer

1131.2 1131.2