Simplify (x+c)(4+c): Distributive Property Practice

Question

It is possible to use the distributive property to simplify the expression?

If so, what is its simplest form?

(x+c)(4+c)=? (x+c)(4+c) =\text{?}

Video Solution

Step-by-Step Solution

We simplify the given expression by opening the parentheses using the extended distributive property:

(x+y)(t+d)=xt+xd+yt+yd (\textcolor{red}{x}+\textcolor{blue}{y})(t+d)=\textcolor{red}{x}t+\textcolor{red}{x}d+\textcolor{blue}{y}t+\textcolor{blue}{y}d Keep in mind that in the distributive property formula mentioned above, we assume that the operation between the terms inside the parentheses is an addition operation, therefore, of course, we will not forget that the sign of the term's coefficient is ery important.

We will also apply the rules of multiplication of signs, so we can present any expression within parentheses that's opened with the distributive property as an expression with addition between all the terms.

In this expression we only have addition signs in parentheses, therefore we go directly to opening the parentheses,

We start by opening the parentheses:

(x+c)(4+c)x4+xc+c4+cc4x+xc+4c+c2 (\textcolor{red}{x}+\textcolor{blue}{c})(4+c)\\ \textcolor{red}{x}\cdot 4+\textcolor{red}{x}\cdot c+\textcolor{blue}{c}\cdot 4+\textcolor{blue}{c} \cdot c\\ 4x+xc+4c+c^2 To simplify this expression, we use the power law for multiplication between terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n}

In the next step like terms come into play.

We define like terms as terms in which the variables (in this case, x and c) have identical powers (in the absence of one of the variables from the expression, we will refer to its power as zero power, this is because raising any number to the power of zero results in 1).

We will also use the substitution property, and we will order the expression from the highest to the lowest power from left to right (we will refer to the regular integer as the power of zero),

Keep in mind that in this new expression there are four different terms, this is because there is not even one pair of terms in which the variables (different) have the same power. Also it is already ordered by power, therefore the expression we have is the final and most simplified expression:4x+xc+4c+c2c2+xc+4x+4c \textcolor{purple}{4x}\textcolor{green}{+xc}\textcolor{black}{+4c}\textcolor{orange}{+c^2 }\\ \textcolor{orange}{c^2 }\textcolor{green}{+xc}\textcolor{purple}{+4x}\textcolor{black}{+4c}\\ We highlight the different terms using colors and, as emphasized before, we make sure that the main sign of the term is correct.

We use the substitution property for multiplication to note that the correct answer is option A.

Answer

Yes, the meaning is 4x+cx+4c+c2 4x+cx+4c+c^2