Simplify the Expression: 2^10 × 3^6 × 2^5 × 3^2 Using Power Rules

Question

Simplify the following equation:

210×36×25×32= 2^{10}\times3^6\times2^5\times3^2=

Video Solution

Step-by-Step Solution

To solve this problem, we'll simplify the expression 210×36×25×322^{10} \times 3^6 \times 2^5 \times 3^2 using the rules of exponents. Here are the steps:

  • Step 1: Apply the product of powers property to the base 2 terms. The expression 210×252^{10} \times 2^5 simplifies to:

    210+5=2152^{10+5} = 2^{15}

  • Step 2: Apply the product of powers property to the base 3 terms. The expression 36×323^6 \times 3^2 simplifies to:

    36+2=383^{6+2} = 3^8

  • Step 3: Combine the simplified terms to form the complete simplified expression:

    215×382^{15} \times 3^8

Therefore, the simplified form of the equation is 215×382^{15} \times 3^8.

Answer

215×38 2^{15}\times3^8