Simplify (2×7)⁴ ÷ (2×7)⁷: Exponent Division Practice

Question

Insert the corresponding expression:

(2×7)4(2×7)7= \frac{\left(2\times7\right)^4}{\left(2\times7\right)^7}=

Video Solution

Step-by-Step Solution

Let's solve the given expression by applying the rules of exponents. The expression given is:
(2×7)4(2×7)7 \frac{\left(2\times7\right)^4}{\left(2\times7\right)^7}

We know the rule for dividing powers with the same base: aman=amn \frac{a^m}{a^n} = a^{m-n} .
In this case, the base is 2×7 2 \times 7 , and we have the exponent 4 in the numerator and 7 in the denominator.

Applying the rule, we subtract the exponent in the denominator from the exponent in the numerator:

  • (2×7)4(2×7)7=(2×7)47 \frac{\left(2\times7\right)^4}{\left(2\times7\right)^7} = \left(2\times7\right)^{4-7} .

Now simplify the exponent:

  • 47=3 4 - 7 = -3

Thus, the expression becomes:
(2×7)3 \left(2\times7\right)^{-3} .

The solution to the question is: (2×7)3 \left(2\times7\right)^{-3} .

Answer

(2×7)3 \left(2\times7\right)^{-3}