Finding Equivalent Forms of 12n+48-36mn-144m: Algebraic Expression Analysis

Question

Which of the expressions are equal to the expression?

12n+4836mn144m 12n+48-36mn-144m

  1. 12(13m)(n+4) 12(1-3m)(n+4)

  2. 3(412m)(n+4) 3(4-12m)(n+4)

  3. 12(3m+4)(n+1) 12(-3m+4)(n+1)

  4. 12(n+4)3m(12n+48) 12(n+4)-3m(12n+48)

Video Solution

Step-by-Step Solution

Let's start by factoring the given expression 12n+4836mn144m 12n + 48 - 36mn - 144m .

First, notice that:

  • In the first two terms: 12n+48 12n + 48 , we can factor out 12 12 , giving us 12(n+4) 12(n + 4) .

  • In the last two terms: 36mn144m -36mn - 144m , we can factor out 36m -36m , resulting in 36m(n+4) -36m(n + 4) .

Combining both factorizations, we can write the original expression as:

12(n+4)36m(n+4) 12(n + 4) - 36m(n + 4)

Now, we factor out the common term (n+4)(n + 4):

(1236m)(n+4) (12 - 36m)(n + 4)

Thus, the expression simplifies to:

12(13m)(n+4) 12(1 - 3m)(n + 4)

Now, let's verify which options match:

Option 1: 12(13m)(n+4) 12(1-3m)(n+4)
This directly matches our simplified expression, so it is a correct choice.

Option 2: 3(412m)(n+4) 3(4 - 12m)(n + 4)
Simplifying: Factoring 3 from 412m 4 - 12m gives 3×4(13m) 3 \times 4(1 - 3m) , which matches the expression 12(13m)(n+4) 12(1 - 3m)(n + 4) . So, this is also a correct choice.

Option 3: 12(3m+4)(n+1) 12(-3m + 4)(n + 1)
The factors do not align with our expression because (n+1)(n+1) is not factored from (n+4) (n + 4) .

Option 4: 12(n+4)3m(12n+48) 12(n + 4) - 3m(12n + 48)
Rewriting: 12(n+4)3m(12(n+4))=(1236m)(n+4) 12(n+4) - 3m(12(n+4)) = (12 - 36m)(n+4) which matches. Therefore, it is correct.

Hence, options 1, 2, and 4 are equivalent to the original expression.

The correct answer to the problem is

1,2,4 1, 2, 4

Answer

1,2,4 1,2,4