Calculate Trapezoid Area: Solving with Height h=(12x-8) and Parallel Sides

Question

What is the area of the trapezoid in the figure?

h=(12x8) h=(12x-8)

x+5x+5x+513x-213x-213x-2hhh

Video Solution

Step-by-Step Solution

To solve this problem, we apply the formula for the area of a trapezoid:

  • Step 1: Identify and substitute the expressions for the bases and height:
    b1=x+5 b_1 = x + 5 , b2=13x2 b_2 = 13x - 2 , h=12x8 h = 12x - 8 .
  • Step 2: Calculate b1+b2 b_1 + b_2 :
    b1+b2=(x+5)+(13x2)=14x+3 b_1 + b_2 = (x + 5) + (13x - 2) = 14x + 3 .
  • Step 3: Substitute into the area formula:
    A=12×(14x+3)×(12x8) A = \frac{1}{2} \times (14x + 3) \times (12x - 8) .
  • Step 4: Distribute and simplify:
    A=12×((14x+3)(12x8)) A = \frac{1}{2} \times ((14x + 3) \cdot (12x - 8)) .
  • Step 5: Expand the product:
    (14x+3)(12x8)=14x12x+14x(8)+312x+3(8)=168x2112x+36x24(14x + 3)(12x - 8) = 14x \cdot 12x + 14x \cdot (-8) + 3 \cdot 12x + 3 \cdot (-8) = 168x^2 - 112x + 36x - 24.
  • Step 6: Combine like terms:
    168x276x24 168x^2 - 76x - 24 .
  • Step 7: Divide by 2 to find the area:
    A=12×(168x276x24)=84x238x12 A = \frac{1}{2} \times (168x^2 - 76x - 24) = 84x^2 - 38x - 12 .

Therefore, the area of the trapezoid is 84x238x12 84x^2 - 38x - 12 .

Answer

84x238x12 84x^2-38x-12