What is the area of the trapezoid in the figure?
h=(12x−8)
To solve this problem, we apply the formula for the area of a trapezoid:
- Step 1: Identify and substitute the expressions for the bases and height:
b1=x+5, b2=13x−2, h=12x−8.
- Step 2: Calculate b1+b2:
b1+b2=(x+5)+(13x−2)=14x+3.
- Step 3: Substitute into the area formula:
A=21×(14x+3)×(12x−8).
- Step 4: Distribute and simplify:
A=21×((14x+3)⋅(12x−8)).
- Step 5: Expand the product:
(14x+3)(12x−8)=14x⋅12x+14x⋅(−8)+3⋅12x+3⋅(−8)=168x2−112x+36x−24.
- Step 6: Combine like terms:
168x2−76x−24.
- Step 7: Divide by 2 to find the area:
A=21×(168x2−76x−24)=84x2−38x−12.
Therefore, the area of the trapezoid is 84x2−38x−12.
84x2−38x−12