There are two circles.
One circle has a radius of 4 cm, while the other circle has a radius of 10 cm.
How many times greater is the area of the second circle than the area of the first circle?
There are two circles.
One circle has a radius of 4 cm, while the other circle has a radius of 10 cm.
How many times greater is the area of the second circle than the area of the first circle?
There are two circles.
The length of the radius of circle 1 is 6 cm.
The length of the diameter of circle 2 is 12 cm.
How many times greater is the area of circle 2 than the area of circle 1?
There are two circles.
The length of the diameter of circle 1 is 4 cm.
The length of the diameter of circle 2 is 10 cm.
How many times larger is the area of circle 2 than the area of circle 1?
There are two circles.
One circle has a radius of 4 cm, while the other circle has a radius of 10 cm.
How many times greater is the area of the second circle than the area of the first circle?
The area of a circle is calculated using the following formula:
where r represents the radius.
Using the formula, we calculate the areas of the circles:
Circle 1:
π*4² =
π16
Circle 2:
π*10² =
π100
To calculate how much larger one circle is than the other (in other words - what is the ratio between them)
All we need to do is divide one area by the other.
100/16 =
6.25
Therefore the answer is 6 and a quarter!
There are two circles.
The length of the radius of circle 1 is 6 cm.
The length of the diameter of circle 2 is 12 cm.
How many times greater is the area of circle 2 than the area of circle 1?
They are equal.
There are two circles.
The length of the diameter of circle 1 is 4 cm.
The length of the diameter of circle 2 is 10 cm.
How many times larger is the area of circle 2 than the area of circle 1?